
1

Java: Code by example

OOP 101

Object Orientated Program right from the beginning.

Version Eight

Author: Steve Eilertsen

Steve.eilertsen@gmail.com

2

JAVA BACKGROUD

1. For a program coded in Java the “Java RunƟme Environment” (JRE) needs to be installed on the
computer. This creates the Java Virtual Machine (JVM) see below. The JVM translates, line-by-line
the Java bytecode to machine code. This is why Java is an interpreted language (not a compiled
language).

2. The JRE creates a “Java Virtual Machine” (JVM). This is a virtual machine (computer) created inside
the RAM. The JVM compiles the bytecode and then runs the compiled machine code within the
JVM. This makes Java a secure language.

3. To code a Java program, one needs the “Java Development Kit” (JDK). This compiles the source
code (English) to bytecode which is saved into a file. This file of bytecode is run by the JVM.
Important ediƟons of Java are called “Long Term Support” (LTS) – these ediƟons are JDK8, JDK11,
JDK17 and JKD21. We are going to use JDK11.

4. One can code in Notepad, but this is inconvenient and Ɵme consuming. Therefore, developers use
an “Integrated RunƟme Environment” (IDE) to assist and speed up development Ɵme. The IDE
provides useful menus, compiler opƟons, troubleshooƟng tools, debugging tools, layout tools, auto
complete, colour coding etc

JAVA – INTRODUCTORY NOTES:

 In the coding examples that follow the line numbers are for reference only – they are not part of the
code.

 Java is case sensiƟve (“public” is not equal to “Public”)
 Classes must always start with a capital leƩer (upper case)
 Methods and variables (idenƟfiers) must start with a small leƩer (lower case)
 Easy-to-read code is vitally important when we code. We use descripƟve class names, descripƟve

method names and descripƟve variable names; layout is equally important i.e. indentaƟon, and
whitespace.

 The name of the class must match the name of the file.
 We code with an OOP two-class model. Only the UI class has a main method.

3

TWO CLASS PROGRAMS using OOP

 The user interface class (the UI class) and the manager class.
 The user interface (UI class) has the main method.
 The manager class. This has the methods that can be called by the UI class.
 Each class is named using a capital leƩer.

The User Interface class – Note the indentaƟon and use of open lines (whitespace). This makes your code
more readable for someone else.

The UI class has the main method and is therefore the point of entry into this mulƟ-class program.

Lines 1 to 3 are comments, although comments can (and should) appear anywhere in a program
that they are needed.

The indentaƟon makes it clear that there is a block of code inside a block of code (block 9 to 15 is
inside block 5 to 17).

In line 12 we create an instance of “HelloWorld Manager” which is called “myManager”.

In line 13 we call the “printThis” method, which is found in “myManager”.

 1 // steve eilertsen
 2 // hello world - two class
 3 // the UI class
 4
 5 public class HelloWorldUI
 6
 7 {
 8
 9 public static void main(String[]args)
10 {
11
12 HelloWorldManager myManager = new HelloWorldManager();
13 myManager.printThis();
14
15 }
16
17 }

4

The Manager class

 Here we find the methods. (The class below does not have a constructor method yet.)
 Line 9 below has a void method called “printThis”. The output goes to the monitor using text mode.
 A method can be called any number of Ɵmes (see line 13 above) – or not called at all.
 From a template class like this we can create many instances of the class, each with its own name

(see line 12 above – “myManager”.)

 5 public class HelloWorldManager
 6
 7 {
 8
 9 public void printThis()
10 {
11
12 System.out.println("Hello World");
13
14 }
15 }

RULES FOR NAMING IDENTIFIERS OR VARIABLES

When we name a class, a method or an idenƟfier (also called variables) . . .

 We may not start with a number.
 Do not use special characters in your naming convenƟons eg @ # $ % & ! etc
 The class or variable name must not have a space.
 We may not use the Java reserved words when we name our classes or variables.

JAVA RESERVED WORDS

These are words that are “reserved” by the Java language. You cannot use these words as idenƟfiers (e.g.
variable names).

Abstract, default, goto, package, thi,s assert, do, if, private, throw, Boolean, double, implements,
protected, throws, break, else, import, public, transient, byte, enum, instanceof, return, true, case,
extends, int, short, try, catch, false, interface, staƟc, void, char, fina,l long, stricƞp, volaƟle, class,
finally, naƟve, super, while, const ,float, new, switch, conƟnue, for, null, synchronized

5

Exercise 1.1. The UI class, the manager class, methods and calling methods.

Using the example above complete the following exercise. Compile and run your program as needed.

1. In jGRASP create a folder called “HelloSchool”.
2. In HelloSchool create a UI class and a manager class – “HelloSchoolUI” and “HelloSchoolManager”.
3. The UI class must have the main method.
4. In the UI class create an instance of HelloSchoolManager.
5. In the manager create two methods i.e. “printThis” and “printThisTwice”.
6. The method printThis must print “Hello School” to the monitor.
7. The method printThisTwice must print “Hello School Again” to the monitor.
8. The output to the monitor must look like this . . .

Hello School

Hello School Again

Hello School Again

6

INPUT FROM THE KEYBOARD

The UI class: We try not to “hardcode” values that can change. Geƫng input from the keyboard makes a
program useful. We need a method to get the input (getName) and a method to print the output
(printName). These methods are called in the UI class, but the code is to be found in the manager class.

 1 // steve eilertsen.
 2 // Input from keyboard
 3
 4 public class InputFromKeyboard
 5 {
 6
 7 public static void main(String[]args)
 8 {
 9
10 InputFromKeyboardManager nc = new InputFromKeyboardManager();
11 nc.getName();
12 nc.printName();
13 }
14 }

===

The manager class: We are going to import a library to get input from the keyboard using graphics mode,
and then to display the result using text mode – both modes are useful. This library is “JOpƟonPane”. We
are going to use the method i.e. “showInputDialog” We are going to take the input from the keyboard and
put it into upper case using the String method “toUpperCase”.

 4 import javax.swing.JOptionPane;
 5
 6 public class InputFromKeyboardManager
 7 {
 8
 9 // global variable. All methods in the manager can use it.
10 String name = null;
11
12 public void getName()
13 {
14 name = JOptionPane.showInputDialog(null, "Enter your full name");
15 name = name.toUpperCase();
16
17 }
18
19 public void printName()
20 {
21 System.out.println("Hello." + “\n” + name + ".");
22 }
23 }

The input in graphics mode using jGRASP The output in text mode using jGRASP

7

NOTES

In line 10 in the manager class, we are declaring a global variable to store the person’s name that comes in
from the keyboard. The variable name we are using is “name” – a good descripƟve name. The datatype is
“String”. String has a capital leƩer because string is a class.

We join text together using “+”; see line 12. This is called to “concatenate”.

We can format our output by concatenaƟng an escape character to our regular text.

“\n” – The new line character. Moves the text onto a new line; see line 21.

Exercise 1.2. Input from the keyboard.

Using the example above complete the following exercise. Compile and run your program as needed.

1. In jGRASP create a folder called “GetInput”.
2. In GetInput create a UI class and a manager class – “GetInputUI” and “GetInputManager”.
3. The UI class must have the main method.
4. In the UI class create an instance of GetInputManager.
5. In the manager create four methods i.e. “getName”, “formatUpper”, “formatLower” and “printThis”

a. A method to get the name from the keyboard.
b. A method to change the formaƫng of the name to uppercase.
c. A method to change the formaƫng of the name to lowercase.
d. A method to print the output to the monitor.

6. The output to the monitor must look like the screen shot below.
7. Copy both your classes to a single notepad file.
8. Print two copies of your notepad file – one to hand in, and one for your own study notes.

The input in graphics mode. The output in text mode.

8

Output to the monitor in both text mode and graphics mode.

Text mode – the code

19 public void printName()
20 {
21 System.out.println("Hello." + name + "." + "\n" + "Welcome" + "\n" +
22 "Your password is @$#&*%");
23 }

The output

Graphics mode – the code

25 public void printName2()
26 {
27
28 JOptionPane.showMessageDialog(null, "Hello." + name + "." + "\n" +
29 "Welcome to the organisation." + "\n" +
30 "Your password is @$#&*%");
31 }

The output

9

Exercise 1.3. Program flow.

An event driven program is one that allows a user to interact with the program in such a way that the
program flow is altered according to the needs of the user. For this reason, program flow, or the “order of
things”, is criƟcal.

Create your own 2 class program that follows the methods above and follows the dialog below.

Copy and paste your work into a single notepad file, print it and hand it in for marking. If successful you
may print a copy for yourself for your study notes.

Program Flow: Your program must follow this dialog using graphics
mode for both input and output.

1)

2)

3)

4)

5)

NOTE:
All input from the keyboard has been placed into
uppercase. For this use only one method – one method
must uppercase name, address, suburb, and city.

If you were to use four separate methods, you will have
created redundant code. Redundant code is unneeded,
unnecessary code that can be replaced using a more
concise coding design. Redundant code is also difficult
to update, edit and troubleshoot because it appears in
more than one place.

10

Object OrientaƟon Programming (OOP)

OOP is about creaƟng objects. Objects have properƟes (characterisƟcs, features) and methods (that do
something).

Here is an example of creaƟng an object that we have used before.

ManagerInputFromKeyboard myManager = new ManagerInputFromKeyboard();

Example: A “person” object. A person can be short or tall (properƟes). A person can play tennis or hockey
(methods)

The most used object is a String object i.e. text in Java is always an object. We can create a String object like
this.

String name = new String(“steve”);

But we seldom use this syntax. For everyday use we declare String like this . . .

String name = “steve”;

Here we have created a String object called “name”. Its properƟes are steve.

The created object “name” has access to many String methods. Here are two examples – the
“toUpperCase” method and the “toLowerCase” method.

name = name.toUpperCase(); // steve would become STEVE

name = name.toLowerCase(); // STEVE would become steve

11

METHODS.

Methods can be coded for us by the Java language, or we can create our own. Here is an example of a
method we coded earlier.

12 public void getName()
13 {
14 name = JOptionPane.showInputDialog(null, "Enter your full name");
15 name = name.toUpperCase();
16
17 }

We name our created objects or coded methods with a small leƩer i.e. name, not Name. printThis, not
PrintThis.

We recognise a method because the name is followed by round brackets e.g. name.toLowerCase();

METHOD AND CLASS HEADERS

Do not confuse method headers with class headers.

Method header – made up of 4 parts Class header – made up of 3 parts

public void getName()

public class ManagerInputFromKeyboard

In the table below the differences between the class header and the method header.

 A - The access
modifier.

B – The return
type.

C D – the name of the
class or method.

E – The arguments.

Method header public void N/A myMethod ()

Class header public N/A class MyClass N/A

In line one is the method header. In line two is the class header.

Column A – The access modifier can be public, private, or protected.

Column B - Only a method has a return type – void or String or int or double or an array etc.

Column D – Classes are named with a capital leƩer and methods (and variables) named with a small leƩer.

Column E - Only a method has arguments – also oŌen generally called parameters. In this example the
argument list is empty.

12

THE CONSTRUCTOR METHOD

A class from which you instanƟate objects should have a special method called the constructor. Its primary task is to
iniƟalize the properƟes of the new created object. For this reason, the constructor runs automaƟcally when you
create the object.

Constructor methods have two characterisƟcs:

1) The have the same name as their class.
2) They do not have a return type like other methods (not void, not String . . . No return type)

Consider the manager class below that has a constructor method.

 1 // steve eilertsen
 2 // Input from keyboard manager
 3
 4 import javax.swing.JOptionPane;
 5
 6 public class InputFromKeyboardManager
 7 {
 8
 9 // global variables. All methods can use them.
10 String name = null;
11 String email = null;
12 String memberSt = null;
13 boolean member = false;
14
15 public InputFromKeyboardManager()
16 {
17
18 name = JOptionPane.showInputDialog(null, "Enter your full name");
19 name = name.toUpperCase();
20
21 email = JOptionPane.showInputDialog(null, "Enter your email address");
22
23 memberSt = JOptionPane.showInputDialog(null, "Member? Type true/false.");
24 member = Boolean.parseBoolean(memberSt);
25
26 }
27
28 public void printName()
29 {
30 System.out.println("Hello." + name + "." + "\n" + "Welcome." + "\n" +
31 "Your email address is: " + email + "\n" + "You are a member: " + member);
32 }
33
34 }

NOTES:

1) The constructor method can be found in lines 15 to 26. This method runs automaƟcally when the object is
instanƟated by a line of code in the UI class.

2) All input from the keyboard arrives as String. Therefore “memberSt” must be parsed to a boolean in line 24.
3) The method “printName” is a normal method and therefore has a return type. In this case “void”.

13

Grade 10 Java coding task. Floor paint version 1.

Use OOP (a UI class and a Manager class) to solve the following problem.

“What is the price of the floor paint needed to paint a specific floor plan?”

NOTE: For this task your manager class may print prompts and answers to the monitor (we should,
however, use the UI class for this purpose).

You need to paint a floor with a special floor paint. The middle of the floor has a special wooded circular
inlay and does not need any paint – only the floor surrounding the circular shape. Using the dimensions in
the diagram below determines the following.

1. The square meterage of the floor to be painted.
2. The number of Ɵns of paint needed
3. The cost of the paint.

Your program must also work for other similar floor shapes and therefore all measurements must come in
from the keyboard.

Paint comes in 5-liter Ɵns and 2-liter Ɵns. How many Ɵns should you purchase?

The cost of the 5-liter Ɵn is R574-00 and the 2-liter Ɵn is R256-00 each.

How much will the paint cost?

14

Phase one. Input. Geƫng the input from the keyboard

Your program should look like this. Use the IPO model i.e. input, processing and output.

The flow of your program should logically look like this.

Use the constructor method to capture the input from the keyboard.

Step one Step two

Step three Step four

Step five Step six

Step seven

You need to declare all the variables you need for the program. Declare them in the manager class, at the top, above
the methods, so that all the methods can use them. We call these global variables.

 // Global variables are as follows.

 // Some of the String variables we need.

 String firstName, lastName;

 String lengthSt = null, breadthSt = null, radiusSt = null;

 String liter5St = null, liter2St = null;

// Some of the number variable we will need. When we convert the Strings variables to
numbers we need number variables.

 double length = 0.0, breadth = 0.0, radius = 0.0;

 double liter5 = 0.0, liter2 = 0.0;

15

Problem: With input from the keyboard, Java works with Strings (text). See example below.

firstName = JOptionPane.showInputDialog(null, "Enter your first name");

To use numbers (both integers and real) we must convert the String text to a number.

To convert String to integers we use the following . . .
Integer.parseInt(String goes here)

length = Integer.parseInt(lengthSt);

NB: This will not work here because we need our
variables to be doubles (real numbers), not integers.

To convert String to real numbers we use the following . . .
Double.parseDouble(String goes here)

length = Double.parseDouble(lengthSt);

NB: This will work here because we need our
variables to be doubles (real numbers).

Working with decimal fracƟons – how much is leŌ over? What is the remainder?

How to determine the value of the remainder when doing division. Java uses “%” to indicate the modulo operator.
SQL uses “MOD”.

16

Phase two. Processing. Determine and check the answers to each calculaƟon.

Now we need to create relevant methods in the manager class to process the input from the keyboard; this will
determine the answer.

Using arithmeƟc, the calculaƟon will look like this . . . We must now code this in Java.

 For this task all our methods will have a return type of “void” as they will print their own output to the
monitor (which is not good, but ok for now)

 For this task all our variables will be global so that all methods can have access to them.
 We will need 7 methods to calculate the cost; each method does one specific task.

1) Area of the rectangle = L x B. In Java this will be method one.

5.25 x 4.35

Ans = 22.8375m2

2) Area of the circle = πr2 . In Java this must be method two.

3.1416 x (1.5 x 1.5)

3.1416 x 2.25

Ans = 7.0686 m2

3) Subtract the area of the circle from the area of the rectangle. Method three.

22.8375 – 7.0686

Ans = 15.7689

4) Determine how much paint is needed per square meter. Another method.

15.7689 x 0.35 // here we convert 350ml to whole liters.

Ans = 5.519115 liters

5) Determine how many 5-liter Ɵns will be needed. Another method.

5.519115 ÷ 5 // how many whole 5-liter Ɵns are needed?

Ans = One 5-liter Ɵn

6) Is there a remainder? Another method in Java.

If there is, add a two-liter Ɵn to cover that. To determine the remainder, we use the modulo operator “%”

5.519115 % 5 // this determines the remainder only.

Ans = 0.519115 // Because there is a remainder, not all of the floor has been painted.

If remainder is > 0, add one 2-liter Ɵn of paint to cover the last of the floor

Final answer is one 5-liter Ɵn and one 2-liter Ɵn.

7) Determine the cost. Method seven in Java.

Cost will be 1 x R574.00 plus 1 x R256.00 = R830.00

Use these answers to check the accuracy
and logic of your coding.

Yes, there will be Ɵny differences because I
rounded off the answers from my
handheld calculator.

17

 Seven methods in the manager class should look like this . . .

 public void areaRectangle()

 {

 areaRect = length * breadth; // here a new variable “areaRect” was needed.

 System.out.println("areaRect = " + areaRect);

 }

 //2

 public void areaCircle()

 {

 Your code goes here

 }

 //3

 public void subtractArea()

 {

 Code goes here

 }

 //4

 public void paint()

 {

 Code goes here

 }

 //5

 public void liter5()

 {

 Code goes here

 }

 //6

 public void remainder()

 {

 Code goes here

 }

 //7

 public void cost()

 {

 Code goes here

 }

Reminders:
If you don’t call a method, it does not run.

Also be sure to call the methods in the
correct order.

You will have to declare several new
variables to store the calculated values.

18

If you place a “System.out.println” into every one of your methods, you will get the same output as that shown
below. From this output you can see that a lot of new variables had to be declared to store the calculated values.

To avoid logic errors, we must know all the answers beforehand; that way we know that our code is logically correct.
Then we can use our program with other variables and know that the answer will be reliable.

The output shown below is in text mode.

Here is the same output shown in graphics mode.

19

The soluƟon - We use the bare bones approach

A working version one, then a working version two, then a working version three

THE FLOOR PAINT TASK. VERSION ONE. The UI class and the manger class

/*

 * Steve Eilertsen

 */

package floorpaint;

public class FloorPaintUI {

 public static void main(String[] args) {

 FloorPaintManager fm = new FloorPaintManager();

 fm.areaRectangle();

 fm.areaCircle();

 fm.subtractArea();

 fm.paint();

 fm.liter5();

 fm.remainder();

 fm.cost();

 }

} // end of the UI class

===

20

/*

 * Steve Eilertsen

 */

package floorpaint;

import javax.swing.JOptionPane;

public class FloorPaintManager {

 // Global variables are as follows.

 // The Strings we need.

 String firstName, lastName;

 String lengthSt = null, breadthSt = null, radiusSt = null;

 String liter5St = null, liter2St = null;

 // When we convert the Strings to numbers.

 double length = 0.0, breadth = 0.0, radius = 0.0;

 double liter5 = 0.0, liter2 = 0.0;

 // the constructor method. All measurements in meters

public FloorPaintManager()

 {

 firstName = JOptionPane.showInputDialog(null, "Enter your first name");

 lastName = JOptionPane.showInputDialog(null, "Enter your last name");

 liter5St = JOptionPane.showInputDialog(null, "Cost of the 5 liter tin?");

 liter2St = JOptionPane.showInputDialog(null, "Cost of the 2 liter tin?");

 lengthSt = JOptionPane.showInputDialog(null, "Input the length of the room");

 breadthSt = JOptionPane.showInputDialog(null, "Input the bredth of the room");

 radiusSt = JOptionPane.showInputDialog(null, "Input the radius of the circle");

 // parse the Strings to numbers (doubles) so that we can calculate.

 length = Double.parseDouble(lengthSt);

 breadth= Double.parseDouble(breadthSt);

 radius = Double.parseDouble(radiusSt);

 } // end of the constructor method

21

//The methods we will need later . . .

 public void areaRectangle()

 {

 }

 //2

 public void areaCircle()

 {

 }

 //3

 public void subtractArea()

 {

 }

 //4

 public void paint()

 {

 }

 //5

 public void liter5()

 {

 }

 //6

 public void remainder()

 {

 }

 //7

 public void cost()

 {

 }

}

22

==

THE FLOOR PAINT TASK

VERSION TWO

/*

 * Steve Eilertsen

 */

package floorpaint;

public class FloorPaintUI {

 public static void main(String[] args) {

 FloorPaintManager fm = new FloorPaintManager();

 fm.areaRectangle();

 fm.areaCircle();

 fm.subtractArea();

 fm.paint();

 fm.liter5();

 fm.remainder();

 fm.cost();

 }

} // end of UI class

==

23

/*

 * Steve Eilertsen

 */

package floorpaint;

import javax.swing.JOptionPane;

public class FloorPaintManager {

 //global variables

 String firstName, lastName;

 String lengthSt = null, breadthSt = null, radiusSt = null;

 double length = 0.0, breadth = 0.0, radius = 0.0;

 double areaRect = 0.0, areaCircle = 0.0;

 double floorArea = 0.0;

 double paintNeeded;

 double tins5;

 double tins2;

 double floorLeft;

 double theCost;

 String literCost5St;

 String literCost2St;

 double literCost5;

 double literCost2;

24

// the constructor method

public FloorPaintManager()

 {

 firstName = JOptionPane.showInputDialog(null, "Enter your first name");

 lastName = JOptionPane.showInputDialog(null, "Enter your last name");

 liter5St = JOptionPane.showInputDialog(null, "Cost of the 5 liter tin?");

 liter2St = JOptionPane.showInputDialog(null, "Cost of the 2 liter tin?");

 lengthSt = JOptionPane.showInputDialog(null, "Input the length of the room");

 breadthSt = JOptionPane.showInputDialog(null, "Input the bredth of the room");

 radiusSt = JOptionPane.showInputDialog(null, "Input the radius of the circle");

 length = Double.parseDouble(lengthSt);

 breadth= Double.parseDouble(breadthSt);

 radius = Double.parseDouble(radiusSt);

 literCost5 = Double.parseDouble(literCost5St);

 literCost2 = Double.parseDouble(literCost2St);

 } // end of the constructor method

 public void areaRectangle()

 {

 areaRect = length * breadth;

 System.out.println("areaRect = " + areaRect);

 }

 //2

 public void areaCircle()

 {

 areaCircle = Math.PI * Math.pow(radius, 2);

 System.out.println("areaCircle = " + areaCircle);

 }

 //3

 public void subtractArea()

 {

 floorArea = areaRect - areaCircle;

 System.out.println("floorArea = " + floorArea);

 }

25

 //4

 public void paint()

 {

 paintNeeded = floorArea * 0.35;

 System.out.println("paintNeeded = " + paintNeeded);

 }

 //5

 public void liter5()

 {

 tins5 = paintNeeded / 5;

 tins5 = Math.round(tins5);

 System.out.println("tins5 = " + tins5);

 }

 //6

 public void remainder()

 {

 floorLeft = paintNeeded % 5;

 System.out.println("floorLeft = " + floorLeft);

 if(floorLeft > 0)

 tins2 = 1.0;

 }

 //7

 public void cost()

 {

 theCost = (tins5 * literCost5) + (tins2 * literCost2);

 System.out.println("cost = " + theCost);

 }

}

==

26

THE FLOOR PAINT TASK

VERSION THREE – This adds the report method to the manager class

We can use “JOpƟonPane.showMessageDialog” to create a graphically based output report.

Here is an example for you to follow. Yes, it is not perfect, but it will do for now.

Can you list four shortcomings of the dialog box alongside?

public void report()

 {

JOptionPane.showMessageDialog(null, lastName + ", " + firstName.charAt(0) + "\n" + "The
number of 5 liter tins is " + tins5 + "\n" + "The number of 2 liter tins is " + tins2 +
"\n" + "The total cost will be R" + theCost);

 }

NOTES and reminders for exams.

 We use the method “showMessageDialog” to create a mini report in graphics mode.
 We join Strings together using the concatenaƟon operator “+” .
 We also use the concatenaƟon operator “+” to create new sentences made up of Strings and variables joined

together.
 We get a new line by using the escape character “\n”.
 The code snippet “firstName.charAt(0)” gives you the first character (only) of the first name. This is

because computers count from zero. The method charAt(0) is a String handling method that returns the
single character at the specified posiƟon – in this case posiƟon zero.

 The coder must type the rand sign “R” as part of the output message.
 Rounding to 0,1 or 2 decimal places should be part of this program but we will not tackle this problem right

now.

27

STRING AND STRING METHODS.

We have already seen toUpperCase and toLowerCase. These are two of many String methods used to
manipulate Strings. We will use the String “steve eilertsen” as an example. In the box below we will use
String methods to separate the first name from the last name. In addiƟon the output of each will be in
upper case. The String methods we will use will be toUpperCase, indexOf and two versions of substring

Input – graphic mode Output – text mode

We find the posiƟon of the space.
Everything before the space is the first name.
Everything aŌer the space is the surname.
The space is not part of the first name or surname.

Strings have index numbers starƟng from zero
“S” is zero, “t” is one, “e” is two, “v” is three, “e” is four,
the space is five.

The String method substring allows us to break Strings
into pieces.

name.substring(0, 5) – here substring works with two
indexes – the first one is INCLUDED and the second is
EXCLUDED.
Therefore substring(0,5) gives us “steve” only.

name.substring(6) – here substring works with one
index – the first one is INCLUDED and because it does
not have a second index it goes all the way to the end of
the name
Therefore substring(6) gives us “eilertsen” only.

Indexes

0 1 2 3 4 5 6 7 8 etc
s t e v e e i l etc

The space is index 5.
Therefore, the surname starts at 5 + 1 – one aŌer the
space which is index 6.

This is what the codes looks like . . .

space = name.indexOf(" ");
// Finds the position of the space.
“space” has been declared as a primitive
datatype – in this case an int (an
integer – a whole number).

firstName = name.substring(0,space);
// Gives us steve only

surname = name.substring(space + 1);
// Gives us eilertsen only

In the program that follows note the correct use of the comments secƟon. Read it because it outlines what
the program does.

28

The line numbers below are for teaching purposes only as there are two DIFFERENT classes when we code them.

 1 // Accepts a full name, determines its length, splits the first from the surname.
 2 // Introduction to String methods
 3 // The UI class
 4
 5 public class StringMethodsUI
 6 {
 7
 8 public static void main(String[]args)
 9
10 {
11
12 StringMethodsManager myManager = new StringMethodsManager();
13
14 myManager.getNames();
15 myManager.lengthName();
16 myManager.printNames();
17
18 }
19
20 }
22 ==================== New Class ==
23
24 import javax.swing.JOptionPane;
25
26 public class StringMethodsManager
27 {
28 // Global variables to store the values we need
29 private String name, firstName, surname;
30 private int space = 0;
31 private int nameLength = 0;
32
33 public void getNames()
34 {
35 name = JOptionPane.showInputDialog(null, "Enter your name – first and last");
36 name = name.toUpperCase();
37 space = name.indexOf(" "); // find the position of the space
38 firstName = name.substring(0,space); // first name is up to the space
39 surname = name.substring(space + 1); // surname is beyond the space
40
41 }
42
43 public void lengthName() // determines the length of the name in characters
44 {
45 nameLength = name.length();
46
47 }
48
49 // Here below the “+” joins strings together (concatenates)
50 public void printNames()
51 {
52 System.out.println("Your name is " + nameLength + " characters long.");
53 System.out.println("Your first name is " + firstName);
54 System.out.println("Your surname is " + surname);
55
56 }
57

29

Exercise 1.4

Study the program on the previous page. Study it line by line. Understand it 100% before starƟng the
exercise.

Write your own two class program that will determine the iniƟals from a person’s name.

Input in graphics mode Output in text mode Hints

Find the space in the name.
Find the first name and the surname.
Use substring to isolate the first leƩer of
each name.
You will need to declare some String
variables to store each iniƟal so that you
can print them later.

On the pages that follow you will find a list of commonly used String methods.

30

STRING – The data type and 19 String methods we use to manipulate them.

Java prefers to work with text. The data type for text is String.

String is a class – it is not a primiƟve data type like int (integer) or double (real numbers).

String is a complex data type i.e. a String has methods. We use methods to manipulate Strings.

Method DescripƟon Input -
Arguement

Output -
Return type

1) charAt() Returns the character at the specified index (posiƟon)

char c = myStr.charAt(0)

The datatype (char),the variable name(c),
object, the method, the arguement

int char

One
character
only

2) compareTo() Compares two strings lexicographically (dicƟonary
order)

int x = myStr1.compareTo(myStr2)

The datatype (int),the variable name(x),
object, the method, the arguement

Strings int

Whole
numbers only

3)
compareToIgnoreCase()

Compares two strings lexicographically, ignoring case
differences

int x = myS1.compareToIgnoreCase(myS2)

String int

4) concat() Appends a string to the end of another string

String s = firstName.concat(lastName)

Datatype(String),the variable name(s),
object, the method, the arguement

String String

5) contains() Checks whether a string contains a sequence of
characters

boolean b = myStr.contains("Hi")

Datatype (boolean),the variable name(b),
object, the method, the arguement

String boolean

true or false

6) endsWith() Checks whether a string ends with the specified
character(s)

boolean b = myStr.endsWith("tion")

String boolean

7) equals() Compares two strings. Returns true if the strings are
equal, and false if not

boolean b = myStr1.equals(myStr2)

String boolean

31

Method DescripƟon Input -
Arguement

Output -
Return type

8) equalsIgnoreCase() Compares two strings, ignoring case consideraƟons
boolean b myS1.equalsIgnoreCase(myS2)

String boolean

9) indexOf() Returns the posiƟon of the first found occurrence of
specified characters in a string

int x1 = myStr.indexOf("p")

int x2 = myStr.indexOf("planet")

String int

10) lastIndexOf() Returns the posiƟon of the last found occurrence of
specified characters in a string

int x =myStr.lastIndexOf("planet")

String int

11) length() Returns the length of a specified string

int x = txt.length()

String int

12) replace()
replaceFirst()
replaceAll()

Searches a string for a specified value, and returns a
new string where the specified values are replaced

String s = myStr.replace('l', 'p')

Two
characters

String

13) split() Splits a string into an array of substrings

String[] arrOfStr = str.split("@", 2)

Delimiter
followed by
the limit

String[]

14) startsWith() Checks whether a string starts with specified characters.

boolean b = myStr.startsWith("o")

String boolean

15) substring() Returns a new string which is the substring of a
specified string

String s1 = myStr.substring(4)
// index 4 to the end

String s2 = myStr.substring(4,7)
// index 4 to 7 only – include, exclude

One or two
index
values

String

16) toLowerCase() Converts a string to lower case leƩers

String s = txt.toLowerCase()

Nil String

17) toString() Returns the value of a String object

String s = txt.toString()

Nil String

32

Method DescripƟon Input -
Arguement

Output -
Return type

18) toUpperCase() Converts a string to upper case leƩers

String s = txt.toUpperCase()

Nil String

19) trim()

Removes whitespace from both ends of a string.
String s = myStr.trim()

Nil

String

PRIMITIVE DATA TYPES

In the exercise 1.4 above we used the primiƟve data type int (integer – a whole number) to find the
posiƟon of the space. For completeness here is a table of the other commonly used primiƟve datatypes.

Datatype Java Examples – declare and iniƟalize

integer – whole numbers int
32 bits

int number = 7;
int start = 0;
int number2 = -76;
We declare it and we iniƟalize it.
See lines 30 and 31 on page 9.

double – real numbers double
64 bits

double number = 7.5;
double zero = 0.0;
double number2 = -5.6567;
We declare it and we iniƟalize it.

boolean – true or false boolean
1 bit

boolean value1 = true;
boolean value2 = false;
We declare it and we iniƟalize it.

character – one single character char
16 bits

char leƩer = ‘A’;
char leƩer2 =’a’;
char myCharacter = ‘&’;
NOTE: Single inverted commas for char.
We declare it and we iniƟalize it.

33

CLASS HEADERS AND METHOD HEADERS

 In the table below the differences between the class header and the method header.

 A - The access
modifier.

B – The
return type.

C D – the name of the class or method. E – The arguments.

1) public N/A class MyClass N/A

2) public void N/A myMethod ()

In line one above is the class header. In line two is the method header.

Column A – The access modifier can be public, private, or protected.

Column B - Only a method has a return type – void or String or int or double etc.

Column D – Classes are named with a capital leƩer and methods (and variables) named with a small leƩer.

Column E - Only a method has arguments – also oŌen generally called parameters. In this example the
argument list is empty.

DATE AND TIME – creaƟon of a date Ɵme object using now()

Let’s create another type of object – a date object and a Ɵme object.

Here is a single method (at this stage) on how to create a date object and a Ɵme object.

Java has an import library for dates and a separate library for Ɵme.

import java.time.LocalDate; // Note: Date is in the “time” folder
import java.time.LocalTime;

We do NOT create a date object or a Ɵme object with the “new” keyword. The “now()” method give us the
date now or the Ɵme now. This informaƟon comes from the OS.

LocalDate theDate = LocalDate.now();
LocalTime theTime = LocalTime.now();

Date objects output like this. 2024-03-21 // yyyy-MM-dd

Time objects output like this. 12:31:03.999 // hh:mm:ss:nn (there are 1000 nanoseconds to one second)

When discussing date and Ɵme “MM” is used for months and “mm” is used for minutes.

34

CONDITIONAL STATEMENTS

Programs are all about making decisions and we use the “If” statement for this. An “if” statement with an
“else” statement chains them together. MulƟple “if” statements without an “else” will be independent and
standalone.

Commentary CondiƟon(s) coded in Java

1)

If a condiƟon is true, this happens (line 3)

If the condiƟon is false, nothing happens (line 3
does not execute)

1 if (price > 1000)
2 {
3 discount = 50;
4 }

Line 3 may execute.
Line 3 may not execute.

2)

If condiƟon1 is true, this happens.

If condiƟon2 is true, that happens.

Both could execute or neither could execute or
only one may execute.

Standalone “if” statements not chained together
must be used with great cauƟon and they result
can be unexpected (called logic errors)

1 if (total > 500)
2 {
3 discount = 50;
4 }
5
6 if(total > 1000)
7 {
8 discount = 70;
9 }

Line 3 could execute.
Line 8 could execute.
Line 3 and line 8 could BOTH execute.
Neither line 3 nor line 8 may execute.

3)

If condiƟon1 is true, line 33 executes.
If condiƟon1 is false, then line 38 will execute.

31 if (total < 500)
32 {
33 discount = 50;
34 }
35
36 else
37 {
38 discount = 70;
39 }

One WILL execute – either 33 or 38

4)

If condiƟon1 is true, line 33 executes.

If condiƟon1 is false, then condiƟon2 MAY execute.
If condiƟon2 is true, line 38 executes.

If condiƟon1 and condiƟon2 are both false, neither
line 33 nor line 38 will execute.

31 if (total > 500)
32 {
33 discount = 50;
34 }
35
36 else if(total > 1000)
37 {
38 discount = 70;
39 }

Line 33 OR line 38 could execute but
never both.
If line 33 executes then line 38 will
never execute.

35

Commentary CondiƟon(s) coded in Java

5) If condiƟon1 is true, then line 33 will execute.
The condiƟons in line 36 and line 40 will never be
tested. Because they are chained together more
than one cannot execute.

total = 5000.
The discount of 100 will never be offered because
line 31 will already have executed.

total = 100
None of the lines (33, 38 or 42) will execute.

31 if (total > 500)
32 {
33 discount = 50;
34 }
35
36 else if (total > 1000)
37 {
38 discount = 70;
39 }
40 else if (total > 2000)
41 {
42 discount = 100;
43 }

6) total = 2000.

All three condiƟons will execute as they are
separate standalone statements.

Discount will be 50, but then discount will be 70,
and finally discount will be 100. This is not good
and is called “redundant” because lines of coding
are running that do not need to run, and the
discount should be 100 right from the start.

31 if (total > 500)
32 {
33 discount = 50;
34 }
35
36 if (total > 1000)
37 {
38 discount = 70;
39 }
40 if (total > 2000)
41 {
42 discount = 100;
43 }

7) Because they are chained together ONLY one
line can execute – line 35 or line 40 or line 44 or
line 48.

Because they are chained together ONE line MUST
execute – line 35 or line 40 or line 44 or line 48.

NOTE: We use “equals” when comparing String to
see if they are the same

33 if(house.equals("Ibus"))
34 {
35 colour = "red";
36 }
37
38 else if (house.equals("Cormorant"))
39 {
40 colour = "Blue";
41 }
42 else if (house.equals("Kingfisher"))
43 {
44 colour = "Green";
45 }
46 else
47 {
48 colour = "Unknown";
49 }

8) Because they are chained together ONLY one
line can execute – line 35 or line 40 or line 44 or
line 48.

Because they are chained together ONE line MUST
execute – line 35 or line 40 or line 44 or line 48.

NOTE:
We use “==” when comparing numbers to see if
they are the same.
We use “=” as the assignment statement – to
assign a value to a variable

33 if(number == 10)
34 {
35 prize = "First Prize";
36 }
37
38 else if (number == 20)
39 {
40 prize = "Second Prize";
41 }
42 else if (number == 30)
43 {
44 prize = "Third Prize";
45 }
46 else
47 {
48 prize = "Consolation Prize";
49 }

36

 1 // Conditional statement. Also date and time. If login name from the keyboard
 2 // is the same as the login name coded into the program - access granted.
 3
 4 public class LoginConditionalUI
 5 {
 6 public static void main(String[]args)
 7 {
 8 LoginConditionalManager myManager = new LoginConditionalManager();
 9 myManager.getDateTime();
10 myManager.enterName();
11 myManager.login();
12 }
13 }
14 ==
15 // Login manager with date and time
16
17 import javax.swing.JOptionPane;
18 import java.time.LocalDate;
19 import java.time.LocalTime;
20
21 public class LoginConditionalManager
22 {
23 // global variables for all methods to use
24 private String myName = "steve";
25 private String name = null;
26 private LocalDate theDate = null;
27 private LocalTime theTime = null;
28
29 public void getDateTime()
30 {
31 theDate = LocalDate.now();
32 theTime = LocalTime.now();
33 System.out.println("The date is " + theDate);
34 System.out.println("The time is " + theTime);
35 }
36
37 public void enterName()
38 {
39 name = JOptionPane.showInputDialog(null, "Enter your name");
40 name = name.toLowerCase();
41 }
42
43 public void login()
44 {
45 if(name.equals(myName)) // Note the indentation and layout
46 {
47 System.out.println("Access granted");
48 }
49 else
50 {
51 System.out.println("Access denied");
52 }
53 }
54 }
55 ===
56 SAMPLE OUTPUT
57 The date is 2024-03-22
58 The time is 08:57:59.054
59 Access granted

37

Exercise 1.5A

Study the program on the previous page. Study it line by line. Understand it 100% before starƟng the
exercise. You will need to use String handling methods and a condiƟonal if statement to complete this
exercise.

Write your own two class program that will grant a discount based on the persons loyalty card number.

1. Loyalty cards that begin with “S” are granted a 10% discount. E.g. S786
2. Loyalty cards that begin with “C” are granted a 7% discount. E.g. C978
3. Loyalty cards with a number longer than 5 characters get 12% E.g. 788736
4. Every other loyalty card gets a 5% discount. E.g. 7865

Input in graphics mode Output in text mode Hints

The card number must be a String so that
you can use String handling methods.
You will need to use condiƟonal “if else”
statements to make sure that only ONE
discount can apply.
You will need to declare some String and
integer variables so that you can print
them later.
Note the percentage sign in the output.

Exercise 1.5B

Edit your program to print out the date and Ɵme when the discount was granted.

Input in graphics mode Output in text mode Hints

You will need to declare date and Ɵme
variables that are global so that all the
methods will have access to their values.
Compile your manager class before you
try to run your program.

CONDITIONAL STATEMENTS – MulƟple compound condiƟons.

We are not limited to one condiƟon – we can join condiƟons together using the logical operators.
Examples in order of precedence

 if it is not assembly day so learners can wear short pants – the NOT logical operator. (!)
 if it is Friday and it is summer so learners can wear t-shirts – the AND logical operator. (&&)
 if it is Friday or it is raining so learners can wear a dri-mac – the OR logical operator. (||)

Java examples – note that the variable must be repeated on each side of the logical operator.

 If(value != 7 && value > 10) { } // value is not equal to 7 and value is larger than 10
 If(value > 10 || value < 0) { } // value is larger than 10 or value is smaller than 0
 If(name.equals(“steve”) && password.equals(“123”) // name is steve and password is 123
 If(total == 100) || prizeAwarded == false) // total is equal to 100 or prize has not been awarded

Precedence – like BODMAS, the logical operators are executed in the order of NOT, AND and finally OR

38

DATE AND TIME – CreaƟng our own date or Ɵme.

Beside the now() method there is another way to create a Ɵme date object i.e. the “of” method. This
keyword of allows us to create a date or Ɵme by passing our own parameters. Note that we always
separate parameters with commas.

A reminder to import the relevant libraries.

 import java.time.LocalTime;
 import java.time.LocalDate;

Examples:

Time: Hours, minutes, and seconds – this is the parameter order. Parameter values must be logical.

LocalTime theTime = LocalTime.of(8,0,0); // This is 08:00am

LocalTime theTime = LocalTime.of(18,20,0); // This is 6:20pm

LocalTime theTime = LocalTime.of(0,0,1); // One 1 second past midnight

LocalTime theTime = LocalTime.of(24,0,1); // Not logical - Error in hour

Date: year, month, day – this is the parameter order. Parameter values must be logical.

LocalDate theDate = LocalDate.of(2012,12,12); // 12 Dec 2012

LocalDate theDate = LocalDate.of(2,12,12); // 12 Dec 0002

LocalDate theDate = LocalDate.of(2012,30,12); // Error in month

LocalDate theDate = LocalDate.of(12,12,2012); // Error in day

DATE AND TIME – our first three date Ɵme methods.

It is useful to know which date or Ɵme came first. For this we have three methods.

 isBefore – returns Boolean when the first date/Ɵme comes before the second.
 isAŌer – returns Boolean when the first date/Ɵme comes aŌer the second.
 isEqual – returns Boolean when the first date/Ɵme is the same as the second.

The login program that follows has two condiƟons that must be met - therefore the use of the logical AND
operator.

1. The login name must match.
2. People may not login before 6am in the morning.

To save space the UI classes will not generally be shown in future unless relevant.

39

 1 // Name and time conditions must both be met.
 2 // People may not login before 6am in the morning
 3
 4 import javax.swing.JOptionPane;
 5 import java.time.LocalTime;
 6
 7 public class LoginConditionalManager
 8 {
 9 // Global variables for all methods to use
10 private String myName = "steve";
11 private String name = null;
12 private LocalTime theTime = null;
13 private LocalTime validTime = LocalTime.of(6,00,00); // no access before 6am
14
15 public void enterName()
16 {
17 name = JOptionPane.showInputDialog(null, "Enter your name");
18 name = name.toLowerCase();
19 }
20
21 public void login()
22 {
23 if(name.equals(myName) && theTime.isAfter(validTime))
24 {
25 System.out.println("Access granted");
26 }
27 else
28 {
29 System.out.println("Access denied");
30 System.out.println("Name or time conditions not met");
31 }
32
33 }
34 }

Exercise 1.5C.

Using the program above as a template, modify your soluƟon to exercise 1.5B (loyalty points). The 1.5C
version must not allow any person to get any discount before 8:30 in the morning.

Exercise 1.5D.

Using the program above as a template, modify your soluƟon to exercise 1.5C (loyalty points). The 1.5D
version must not allow any person to get a discount before 8:30 in the morning and aŌer 6:45 in the
evening.

